At Diamond MT, we offer parylene coatings of different polymeric varieties (N, C, and F) as listed in the following Table. The basic parylene molecule is the Parylene N (poly-para-xylylene) monomer. Modification of the Parylene N monomer by a functional group such as Chlorine and Fluorine leads to Parylene C (poly(2-chloro-para-xylylene)) and Parylene F, respectively. The derivatization of new varieties can be done by the addition of functional groups to Paryelene N main-chain phenyl ring and its alip
Read More Tags:parylene,parylene properties,parylene C,parylene n,parylene f
Parylene is a transparent polymer offering uniform and pinhole-free conformal coatings. Different varieties of parylene (Parylene N, C, D, AF4, and F) formed by a modification in their molecular structure. Each modification results in a set of material properties that are applicable in different service conditions. The basic type of parylene derivatives is the Parylene N (poly-para-xylylene) monomer.
Read More Tags:parylene,parylene coating process,sensors,oil and gas
The polymer parylene (XY) is a reliable protective conformal film that safeguards the visual clarity and color of printed circuit boards (PCBs), similar electronic assemblies and other products. XY optical clarity seldom diminishes to the extent either the coating or the underlying substrate becomes visually indistinct, although over-exposure to ultraviolet (UV) light may eventually interfere with optical perception. However, in the majority of cases, colorless parylene generates advantageous optical properties for a wide range of uses -- including artwork/museum artifacts, cameras/sensors, computer touchscreens, healthcare/medical devices, light-emitting diode systems (LEDs), and optoelectronic components maintaining consistent aerospace, scientific, and telecommunication operations.
Read More Tags:parylene,parylene properties,optical performance
Parylene (XY -- poly(para-xylylene)) organic polymers are highly regarded through a wide range of industries – aerospace/defense, automotive, commercial, industrial, medical – for their utility as conformal coatings. Chemically inert, colorless, linear/polycrystalline and optically clear, XY coatings provide exceptional barrier protection, dielectric reliability, and insulation for printed circuit boards (PCBs) and similar electronic assemblies whose components must maintain performance through all operating conditions. Parylene conformal films safeguard function in the presence of biogases, biofluids, chemicals, moisture/mist, salt compounds, and temperature fluctuations.
Read More Tags:parylene,Medical conformal coatings,medical parylene,medical parylene uses,medical devices,bio-medical,medical device coating,sterilization
A natural process, corrosion enacts chemical/electrochemical reactions that degrade and gradually destroy materials or components within a functional environment. The outcome can be dangerous and costly to repair.
Read More Tags:parylene,parylene coating process,parylene properties
A primary function of all conformal coatings is maintaining sufficient insulation and avoiding dielectric breakdown while protecting printed circuit boards (PCBs) and related electronic assemblies. Providing a completely homogeneous coating surface, parylene (XY) conformal coatings are exceptionally corrosion-resistant, dense and pinhole-free. Among other performance advantages, ultra-thin XY protective films offer superior dielectric properties. Dielectric substances maintain electrical insulation, simultaneously transmitting electricity without conduction. They have the potential to store energy because they support electrostatic fields that release only low levels of thermal energy.
Read More Tags:parylene,parylene properties,dielectric strength
Company is looking to serve the aerospace, defense, and medical markets in Florida with the new location.
Read More Tags:parylene,conformal coating spray,parylene for aerospace
Conformal coatings primary purpose is protecting the performance of highly sophisticated electronics such as printed circuit boards (PCBs), sustaining their functionality through often unfriendly operating conditions. Among the most important coating-requirement is safeguarding PCBs from the negative impact of moisture incursion. Sources are many. Liquidized obstacles to appropriate assembly function can result from unwanted contact with acid rain, aggressive solvents, atmosphere pollutants, chemicals, fog, high humidity, intermittent immersion, persistent rain, snow, salt water/mist and wet sprays of any kind.
Read More Tags:parylene,parylene properties,parylene thickness
Chemically inert parylene (Poly-para-xylylene/XY) conformal film is often selected because its micron-thin protective films generate precise coating uniformity, regardless of substrate topography. To this extent, XY far exceeds the capacities of liquid materials – resins of acrylic, epoxy, silicone or urethane – for a wide range of coating assignments. It is true that pre-synthesized liquid coatings are easier to apply. However, their conformal films are dimensionally thicker, making them difficult to position in constricted operating spaces. Liquids are also generally less resistant to contaminant incursion and other problems that interfere with reliable performance of printed circuit boards (PCBs), and most other contemporary electronics, including biomedical implants.
Read More Tags:parylene,parylene properties,lubricious coatings
Used for food production, indoor gardening/hydroponics, and horticulture, grow lights have both industrial and consumer applications. Because total illumination intensity diminishes with distance from the point source (grow lightbulbs), production efficiency is enhanced by:
Read More Tags:silicone conformal coating,LED conformal coating,parylene for LEDs,agricultural lighting coating